The check matrix of a [126,116,5]4 (dual distance 60).
For more information see New code parameters from Reed-Solomon subfield codes.
100000000001232201223310112310221212302030313130200330131220310310033131030330302313312311022302233030330020100102311201220200
010000000011110011322200103222110312313121210213033013313012310213020331033203000121223012210032231111122313331120300000210320
001000000000000001111111111111110000000000000000111111111111111111000200321202321110032303111011210121233111211310323133302333
000100000010222310233211013300320313312120212120301320031321300223232030112311021023023012013110030322102100223123113231010233
000010000010233300100001100032331100100000013323322223222232111011211102112002112012320001022220023103221322111211233222312021
000001000011332312212003022102211133320032002311121303023031030232210021100213300100300033222210330002133120333100032110301321
000000100000000000000000000000000111111111111111111111111111111122000300032312032220013010023300110302132332203113130320120120
000000010011011002202013032121121022221123010132202020310303031211000222303002303332210303031322100331102320132210230212000012
000000001001322212030313021230310331022103203103103311231022220122333312323030101210212213133312203000232230110100300110003131
000000000100223212212003133013301133320023113200121303022120121312012221013311331302332103103231302000001301201100220212233313
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.
| Some codes | home |